CHEMICAL QUANTITIES

SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287-296)

This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate the mass of a mole of any substance.

	Measuring	Matter	(pages 28	37–289)
--	-----------	--------	-----------	---------

	scientists ask.
	They are questions about the amount of a substantce and are similar to questions
1.	What do the questions "how much?" and "how many?" have in common?

2.	List two or three ways to measure matter.
	count the matter, measure the mass or weight, measure the volume

		.,				
W	/hat Is a Mo	l e? (pages 290)–293)			
3.	Circle the letter of the term that is an SI unit for measuring the amount of a substance.					
	a. dozen	b. ounce	c. pair	d.	mole	
4.	What is Avogad	ro's number?				
	6.02×10^{23} representative particles of a substance					
5.	5. Circle the letter of the term that is NOT a representative particle of a substance.				ve particle of a	
	a. molecule	b. atom	c. grain	d.	formula unit	
6.	List the represe	ntative particle	for each of the foll	owir	ng types of substances.	
	a. molecular co	ompounds _	molecule		-	
	b. ionic compo	unds _	formula unit		_	
	c. elements	_	atom		-	
7.	7. Is the following sentence true or false? To determine the number of				he number of	
	representative particles in a compound, you count the molecules by viewing					
	them under a n	nicroscope	false			
8.	How can you de	etermine the nu	ımber of atoms in a	a mo	le of a molecular compound?	

Use the chemical formula to find the number of atoms in one molecule and multiply

this number by Avogadro's number, the number of particles in one mole.

9. Complete the table about representative particles and moles.

Representative Particles and Moles					
	Representative Particle	Chemical Formula	Representative Particles in 1.00 mol		
Atomic oxygen	Atom	0	6.02×10^{23}		
Oxygen gas	Molecule	O ₂	6.02×10^{23}		
Sodium ion	Ion	Na ⁺	6.02×10^{23}		
Sodium chloride	Formula unit	NaCl	6.02×10^{23}		

► The Mass of a Mole of an Element (pages 293–294)

10. What is the atomic mass of an element?

The atomic mass of an element is the mass of a single atom in atomic mass units.

- 11. Circle the letter of the phrase that completes this sentence correctly. The atomic masses of all elements
 - a. are the same.
 - **b.**) are based on the mass of the carbon isotope C-12.
 - **c.** are based on the mass of a hydrogen atom.

► The Mass of a Mole of a Compound (pages 295–296)

12. How do you determine the mass of a mole of a compound?

The mass of a mole of a compound is determined by adding the atomic masses of the atoms making up the molecule.

13. Complete the labels on the diagram below.

Date _

15. Is the following sentence true or false? Molar masses can be calculated

SECTION 10.2 MOLE-MASS AND MOLE-VOLUME

RELATIONSHIPS (pages 297–303)

directly from atomic masses expressed in grams. _____

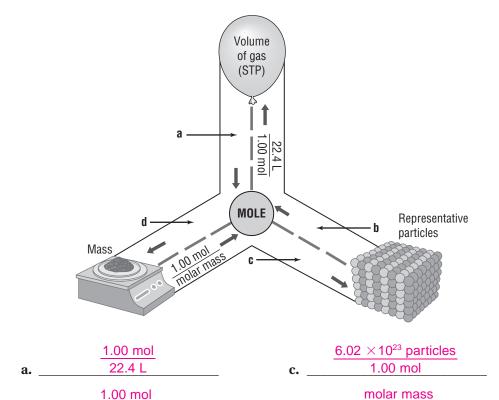
14. What is the molar mass of a compound?

It is the mass of 1 mol of that compound.

Class

9. What is Avogadro's hypothesis?

Avogadro's hypothesis says that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.


10. Look at Figure 10.9 on page 300 to help you answer this question. Why is Avogadro's hypothesis reasonable?

As long as the gas particles are not tightly packed, there is a great deal of empty space between them. A container can easily accommodate the same number of relatively large or relatively small gas particles.

11. How many gas particles occupy a volume of 22.4 L at standard temperature and pressure? 6.02×10^{23} particles

► The Mole Road Map (page 303)

12. The figure below shows how to convert from one unit to another unit. Write the missing conversion factors below.

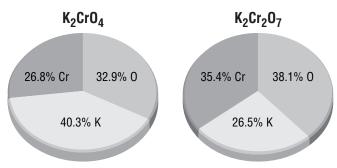
1.00 mol

 6.02×10^{23} particles

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

SECTION 10.3 PERCENT COMPOSITION AND CHEMICAL FORMULAS (pages 305–312)

This section explains how to calculate percent composition from chemical formulas or experimental data, and how to derive empirical and molecular formulas.


Percent Composition of a Compound (pages 305–308)

- 1. How do you express relative amounts of each element in a compound? Relative amounts are expressed by the percent composition or the percent by mass.
- **2.** Circle the letter of the phrase that completes this sentence correctly. The number of percent values in the percent composition of a compound is
 - a. half as many as there are different elements in the compound.
 - **(b.)** as many as there are different elements in the compound.
 - **c.** twice as many as there are different elements in the compound.
- **3.** What is the formula for the percent by mass of an element in a compound?

grams of element % mass of element = $\overline{\text{grams of compound}} \times 100\%$

4. In the diagram below, which compound has a greater percent composition of potassium dichromate chromium?

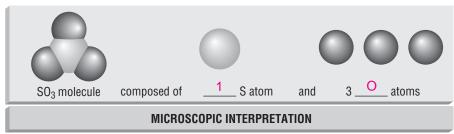
How much greater is this percent?

Potassium chromate, K₂CrO₄

Potassium dichromate, K₂Cr₂O₇

- 5. To calculate the percent composition of a known compound, start with the molar mass chemical formula of the compound and calculate the _ which gives the mass of one mole of the compound.
- **6.** Is the following sentence true or false? You can use percent composition to calculate the number of grams of an element in a given amount of a compound. ____

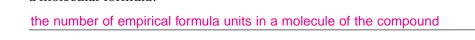
7. How do you calculate the grams of an element in a specific amount of a compound?


Multiply the mass of the compound by a conversion factor that is based on the percent composition.

► Empirical Formulas (pages 309–310)

- **8.** An empirical formula of a compound gives the ______lowest whole-number ratio of the atoms of the elements in a compound.
- ${f 10.}$ Look at Figure 10.16 and Table 10.3. Name three compounds that have an empirical formula of CH.

ethyne, styrene, benzene


11. Fill in the labels on the diagram below.

ne	Date	Class			
Molecular Formu	ı las (pages 311–312)				
12. The molecular form	The molecular formula of a compound is either the same as its empirical				
formula or a	whole-number multiple	_ of it.			
13. What do you need to	. What do you need to know to calculate the molecular formula of a compound?				
You need the empiri	You need the empirical formula of the compound and its molar mass.				
14. If you divide the mowhat is the result?	lar mass of a compound by the em	npirical formula mass,			
The result is the nun	nber of empirical formula units in a	molecule of the compound.			
	ou use to convert the empirical for	·			

Reading Skill Practice

By looking carefully at photographs and illustrations in textbooks, you can better understand what you have read. Look carefully at Figure 10.15 on page 309. What important idea does this illustration communicate?

This illustration shows that a chemical formula, in this example CO₂, can be understood on the microscopic level in terms of atoms or on the macroscopic level in terms of moles of atoms.

GUIDED PRACTICE PROBLEMS

GUIDED PRACTICE PROBLEM 1 (page 289)

1. If 0.20 bushels is 1 dozen apples and a dozen apples has a mass of 2.0 kg, what is the mass of 0.50 bushel of apples?

Analyze

Step 1. List the knowns and the unknown.

Knowns

number of bushels = 0.5 bushel

0.20 bushel = 1 dozen apples

1 dozen apples = 2.0 kg

Unknown

Mass of 0.5 bushel of apples = ? kg

Use dimensional analysis to convert the number of bushels to the mass of apples, by following this sequence of conversions:

Number of bushels \rightarrow dozens of apples \rightarrow mass of apples

Calculate

Step 2. Solve for the unknown.
The first conversion factor is:

1dozen apples
0.20 bushel

The second conversion factor is: 2.0 kg apples

1 dozen apples

Multiplying the number of bushels by these two conversion factors gives the answer in kilograms.

mass of apples = 0.50 $\frac{\text{bushels}}{\text{0.20 bushel}} \times \frac{\frac{\text{2.0 kg apples}}{\text{1-dozen apples}}}{\frac{\text{2.0 kg apples}}{\text{1-dozen apples}}} = 5.0 \text{ kg apples}$

The mass of 0.50 bushel of apples is ______.

Evaluate

Step 3. Does the result make sense?

Because a dozen apples is 2.0 kg and 0.5 bushels is more than two dozen but less than three dozen, the mass should be more than 4 kg (2 dozen \times 2.0 kg) and less than 6 kg (3 dozen \times 2.0 kg).

GUIDED PRACTICE PROBLEM 3 (page 291)

3. How many moles is 2.80×10^{24} atoms of silicon?

Step 1. List what you know.

 2.80×10^{24} atoms of Si

 6.02×10^{23}

atoms in one mole

Step 2. Multiply the atoms of silicon by a mol/atoms conversion factor.

 2.80×10^{24} atoms Si \times

 $\frac{1 \text{ mol}}{6.02 \times 10^{23}} \text{ atoms Si}$

Step 3. Divide.

4.65 mol

GUIDED PRACTICE PROBLEM 5 (page 292)

5. How many atoms are in 1.14 mol SO₃?

Analyze

Step 1. List the knowns and the unknown.

Knowns

number of moles = 1.14 mol SO_3

1 mol $SO_3 = 6.02 \times 10^{23}$ molecules SO_3

1 molecule $SO_3 = 4$ atoms (1 S atom and 3 O atoms)

Unknown

 $1.14 \text{ mol SO}_3 = ? \text{ atoms}$

Calculate

Step 2. Solve for the unknown.

The first conversion factor is

 $\frac{6.02 \times 10^{23} \text{ molecules of water}}{1 \text{ mol water}}$

The second conversion factor is $\frac{4 \text{ atoms}}{1 \text{ molecule SO}_3}$

Multiply moles of SO₃ by these conversion factors:

$$number \ of \ atoms = 1.14 \ \frac{6.02 \times 10^{23} \ \frac{molecules \ of \ SO_3}{1 \ mol \ SO_3}}{1 \ molecule \ SO_3} \times \frac{4 \ atoms}{1 \ molecule \ SO_3}$$

$$=$$
 2.75 \times 10²⁴ atoms

Evaluate

Step 3. Does the result make sense?

Because 4 atoms are in a molecule of SO₃ and there is a little more than one mole of molecules, the answer should be more than 4 times Avogadro's number of atoms.

Class __

CHAPTER 10, Chemical Quantities (continued)

EXTRA PRACTICE (similar to Practice Problem 5, page 292)

4. How many molecules is 0.360 mol of water?

Analyze

Step 1. List the knowns and the unknown.

Knowns

Number of mols of water = 0.360 mol water

1 mol water = 6.02×10^{23} molecules water

Unknown

0.360 mol water =? molecules water

Calculate

Step 2. Solve for the unknown.

The conversion factor is 6.02×10^{23} molecules of water

1 mol water

Multiplying mols of water by this conversion factor will give the answer

molecules of water = $0.360 \frac{\text{mol water}}{\text{mol water}} \times$

 6.02×10^{23} molecules of water

= 2.17 \times 10²³ molecules of water

Evaluate

Step 3. Does the result make sense?

Since the given number of mols of water is about one-third mol, the result should

be about one-third of Avogadro's number of molecules ($1/3 \times 6 = 2$).

GUIDED PRACTICE PROBLEM 7 (page 296)

7. Find the molar mass of PCl₃.

Analyze

Step 1. List the knowns and the unknown.

Knowns

Molecular formula = PCl₃

1 molar mass P = 31.0 g P

1 molar mass CI = 35.5 g CI

Unknown

 $molar mass PCl_3 = ? g$

Calculate

Step 2. Solve for the unknown.

Convert moles of phosphorus and chlorine to grams of phosphorus and chlorine. Then add to get the results.

$$1 \frac{\text{mol P}}{\text{1 mol P}} \times \frac{31.0 \text{ g P}}{\text{1 mol P}} = 31.0 \text{ g P}$$

$$3 \frac{\text{mol Cl}}{1 \frac{\text{mol Cl}}{\text{Cl}}} \times \frac{35.5 \text{ g Cl}}{1 \frac{\text{mol Cl}}{\text{Cl}}} = 106.5 \text{ g Cl}$$

molar mass of $PCl_3 =$ 137.5 g

Evaluate

Step 3. Does the result make sense?

The answer is the sum of the molar mass of phosphorus and three times the molar

mass of chlorine, expressed to the tenths decimal place.

EXTRA PRACTICE (similar to Practice Problem 5, page 292)

5. How many atoms are there in 2.00 moles of SO₃?

$$2.00 \frac{\text{mol}}{\text{mol}} \times \frac{6.02 \times 10^{23} \text{ molecules SO}_3}{\text{mol}} \times \frac{4 \text{ atoms}}{\text{molecule SO}_2} = 4.82 \times 10^{24} \text{ atoms}$$

EXTRA PRACTICE (similar to Practice Problem 7, page 296)

7. Find the molar mass of table salt (sodium chloride).

The formula for sodium chloride is NaCl.

molar mass NaCl = 1 mol Na + 1 mol Cl
$$= (1 \frac{\text{mol Na}}{1 \frac{\text{mol Na}}{1 \text{mol Na}}}) + (1 \frac{\text{mol Cl}}{1 \frac{\text{mol Cl}}{1 \text{mol Cl}}})$$
$$= 23.0 \text{ g} + 35.5 \text{ g} = 58.5 \text{ g}$$

EXTRA PRACTICE (similar to Practice Problem 8, page 296)

8. What is the mass of 1 mole of ozone (O_3) ?

$$1 \text{ mol } O_3 \times \frac{48.0 \text{ g } O_3}{1 \text{ mol } O_3} = 48.0 \text{ g } O_3$$

GUIDED PRACTICE PROBLEM 16 (page 298)

16. Find the mass, in grams, of 4.52×10^{-3} mol $C_{20}H_{42}$.

Analyze

Step 1. List the known and the unknown.

Known

number of moles = 4.52×10^{-3} mol C₂₀H₄₂

Unknown

mass = ? g $C_{20}H_{42}$

Calculate

Step 2. Solve for the unknown.

Determine the molar mass of $C_{20}H_{42}$:

1 mol
$$C_{20}H_{42} = 20 \times 12.0 \text{ g} + 42 \times 1.0 \text{ g} = 282 \text{ g}$$

Multiply the given number of moles by the conversion factor:

mass =
$$4.52 \times 10^{-3} \frac{\text{mol C}_{20} H_{42}}{1 \frac{1 \text{mol C}_{20} H_{425}}{1 \frac{1 \text{mol C}_{20} H_{425$$

Evaluate

Step 3. Does the result make sense?

The amount of substance is a little more than four-one thousandths of a mole, so

the mass should be only a small fraction of the molar mass.

EXTRA PRACTICE (similar to Practice Problem 17, page 298)

17. Calculate the mass, in grams, of 10 mol of sodium sulfate (Na₂SO₄).

10 × (2 mol Na + 1 mol S + 4 mol O)
=
$$10 \times (2 \frac{23.0 \text{ g}}{\text{mol Na}} + 1 \frac{32.1 \text{ g}}{\text{mol S}} + 4 \frac{16.0 \text{ g}}{\text{mol O}})$$

= $10 \times (46.0 \text{ g} + 32.1 \text{ g} + 64.0 \text{ g})$
= $10 \times (142.1 \text{ g}) = 1421 \text{ g}$

Calculate the mass, in grams, of 10 mol of iron(II) hydroxide (Fe(OH)₂).

10 × (1 mol Fe + 2 mol O + 2 mol H)
=
$$10 \times (1 \frac{55.8 \text{ g}}{\text{mol Fe}} \times \frac{55.8 \text{ g}}{\text{mol Fe}} + 2 \frac{16.0 \text{ g}}{\text{mol O}} + 2 \frac{1.0 \text{ g}}{\text{mol H}} \times \frac{1.0 \text{ g}}{\text{mol H}})$$

= $10 \times (55.8 \text{ g} + 32.0 \text{ g} + 2.0 \text{ g})$
= $10 \times 89.8 \text{ g} = 898 \text{ g}$

GUIDED PRACTICE PROBLEM 18 (page 299)

18. Find the number of moles in 3.70×10^{-1} g of boron.

Analyze

Step 1. List the known and the unknown.

Known

mass = 3.70×10^{-1} g boron

Unknown

number of moles = ? mol boron

The unknown number of moles is calculated by converting the known mass to the number of moles using a conversion factor of mass \rightarrow moles.

Calculate

Step 2. Solve for the unknown.

Determine the molar mass of boron: 1 mol B = 10.8 g B

Multiply the given mass by the conversion factor relating mass of boron to moles of boron:

$$mass = 3.70 \times 10^{-1} \frac{\text{g B}}{\text{g B}} \times \frac{1 \text{ mol B}}{10.8 \frac{\text{g B}}{\text{g B}}}$$

$$=$$
 3.43 \times 10⁻² mol B

Evaluate

Step 3. Does the result make sense?

Because the value of the conversion factor is about one-tenth, the numerical result

should be about one-tenth of the given number of grams.

GUIDED PRACTICE PROBLEM 20 (page 301)

20. What is the volume of these gases at STP?

a.
$$3.20 \times 10^{-3} \text{ mol CO}_2$$

b. $3.70 \text{ mol } N_2$

a. $3.20 \times 10^{-3} \text{ mol CO}_2$

Analyze

Step 1. List the knowns and the unknown.

Knowns

number of moles = 3.20×10^{-3} mol CO₂

1 mol $CO_2 = 22.4 L CO_2$

Unknown

volume = ? L CO₂

To convert moles to liters, use the relationship 1 mol $CO_2 = 22.4 L CO_2$ (at STP).

Calculate

Step 2. Solve for the unknown.

Multiply the given number of moles of CO₂ by the conversion factor to give the

$$volume = 3.20 \times 10^{-3} \frac{\text{mol CO}_2}{\text{1 mol CO}_2} \times \frac{22.4 \text{ L CO}_2}{\text{1 mol CO}_2}$$

$$=$$
 7.17 \times 10⁻² L CO₂

Evaluate

Step 3. Does the result make sense?

Because a mole of gas occupies a volume of a little more than 20 liters, the result

should be a little larger than twenty times the given number of moles.

b. $3.70 \text{ mol } N_2$

Analyze

Step 1. List the knowns and the unknown.

Knowns

number of moles = 3.70 mol N_2

1 mol
$$N_2 = 22.4 L N_2$$

Unknown

volume =
$$? L N_2$$

Use the relationship 1 mol $N_2 = 22.4 L N_2$ (at STP) to convert moles to liters.

Calculate

Step 2. Solve for the unknown.

Multiply the given number of moles of N₂ by the conversion factor to give the result.

volume = 3.70 mol N₂ ×
$$\frac{22.4 \text{ L N}_2}{1 \text{ mol N}_2}$$

$$=$$
 82.9 L N_2

Evaluate

Step 3. Does the result make sense?

Because the number of moles is slightly less than four, the result should be close

to, but less than 88 L.

GUIDED PRACTICE PROBLEM 22 (page 302)

22. A gaseous compound composed of sulfur and oxygen, which is linked to the formation of acid rain, has a density of 3.58 g/L at STP. What is the molar mass of this gas?

Analyze

Step 1. List the knowns and the unknown.

Knowns

density = 3.58 g/L

1 mol (gas at STP) = 22.4 L

Unknown

molar mass = ? g

To convert density (g/L) to molar mass (g/mol), a conversion factor of L/mol is needed.

Calculate

Step 2. Solve for the unknown.

Multiply the density by the conversion factor relating liters and moles.

$$molar mass = \frac{3.58 \text{ g}}{1 \text{ L}} \times \frac{22.4 \text{ L}}{1 \text{ mol}}$$

Evaluate

Step 3. Does the result make sense?

Multiplying approximately 4 grams/liter by approximately 20 liters/mole yields

about 80 grams/mole.

GUIDED PRACTICE PROBLEM 32 (page 306)

32. A compound is formed when 9.03 g Mg combines with 3.48 g N. What is the percent composition of this compound?

Analyze

Step 1. List the known and the unknowns.

Knowns

mass of Mg = 9.03 g Mg

mass of N = 3.48 g N

mass of compound = 9.03 g Mg + 3.48 g N = 12.51 g

Unknowns

percent Mg = ? %

percent N = ? %

The percent of an element in a compound is the mass of the element in the compound divided by the mass of the compound. To be expressed as a percentage, the ratio must be multiplied by 100%.

Calculate

Step 2. Solve for the unknown.

$$percent \ Mg = \frac{9.03 \ g \ Mg}{12.51 \ g \ compound} \times 100\% = \underline{\hspace{1cm} 72.2\% \ Mg}$$

percent N =
$$\frac{3.48 \text{ g N}}{12.51 \text{ g compound}} \times 100\% = \frac{27.8\% \text{ N}}{}$$

Evaluate

Step 3. Does the result make sense?

The percents of the elements of the compound add up to 100%.

72.2% + 27.8% = 100%

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

GUIDED PRACTICE PROBLEM 34 (page 307)

- **34.** Calculate the percent composition of these compounds.
 - **a.** ethane (C_2H_6)
 - **b.** sodium bisulfate (NaHSO₄)

a. ethane (C_2H_6)

Analyze

Step 1. List the knowns and the unknowns.

Knowns

mass of C in one mole ethane = $2 \times 12.0 \text{ g} = 24.0 \text{ g}$

mass of H in one mole ethane = $6 \times 1.0 \text{ g} = 6.0 \text{g}$

molar mass of $C_2H_6 = 24.0 \text{ g} + 6.0 \text{ g} = 30.0 \text{ g}$

Unknowns

percent C = ? %

percent H = ? %

Because no masses are given, the percent composition can be determined based on the molar mass of the substance. The percent of an element in a compound is the mass of the element in the compound divided by the mass of the compound. To express the ratio as a percent, the ratio is multiplied by 100%.

Calculate

Step 2. Solve for the unknown.

percent C =
$$\frac{24.0 \text{ g C}}{30.0 \text{ g compound}} \times 100\% = \frac{80.0\% \text{ C}}{}$$

percent H =
$$\frac{6.0 \text{ g H}}{30.0 \text{ g compound}} \times 100\% = \underline{20.0\% \text{ H}}$$

Evaluate

Step 3. Does the result make sense?

The percents of the elements of the compound add up to 100%.

80.0% + 20.0% = 100%

b. sodium bisulfate (NaHSO₄)

Analyze

Step 1. List the knowns and the unknowns.

mass of Na in one mole sodium bisulfate = 1×23.0 g = 23.0g

mass of H in one mole sodium bisulfate = $1 \times 1.0 \text{ g} = 1.0 \text{ g}$

mass of S in one mole sodium bisulfate = $1 \times 32.1 \text{ g} = 32.1 \text{ g}$

mass of O in one mole sodium bisulfate = $4 \times 16.0 \text{ g} = 64.0 \text{ g}$

molar mass of NaHSO₄ = 23.0 g + 1.0 g + 32.1 g + 64.0 g = 120.1 g

Unknowns

percent Na = ? %

percent H = ? %

percent S = ? %

percent O = ? %

Because no masses are given, the percent composition can be determined based on the molar mass of the substance. The percent of an element in a compound is the mass of the element in the compound divided by the mass of the compound. To express the ratio as a percent, the ratio is multiplied by 100%.

Calculate

Step 2. Solve for the unknown.

percent Na =
$$\frac{23.0 \text{ g Na}}{120.1 \text{ g compound}} \times 100\% = \frac{19.2\% \text{ Na}}{120.1 \text{ g compound}} \times 100\% = \frac{0.83\% \text{ H}}{120.1 \text{ g compound}} \times 100\% = \frac{32.1 \text{ g S}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{120.1 \text{ g compound}} \times 100\% = \frac{2$$

percent S =
$$\frac{32.1 \text{ g S}}{120.1 \text{ g compound}} \times 100\% = \frac{26.7\% \text{ C}}{}$$

percent O =
$$\frac{64.0 \text{ g O}}{120.1 \text{ g compound}} \times 100\% = ______$$

Evaluate

Step 3. Does the result make sense?

The percents of the elements of the compound add up to 100%.

19.2% + 0.83% + 26.7% + 53.3% = 100%

GUIDED PRACTICE PROBLEM 36 (page 310)

36. Calculate the empirical formula of each compound.

a. 94.1% O, 5.9% H

b. 67.6% Hg, 10.8% S, 21.6% O

a. 94.1% O, 5.9% H

Analyze

Step 1. List the knowns and the unknown.

Knowns

percent composition: 94.1% O, 5.9% H

molar mass O = 16.0 g/mol O

molar mass H = 1.0 g/mol H

Unknown

empirical formula = H₂O₂

Use the percent composition to convert to mass, recalling that percent means parts per hundred. Then use the molar mass to convert to number of moles. Finally, determine whole number ratios based on the number of moles of each element per 100 grams of compound.

Calculate

Step 2. Solve for the unknown.

One hundred grams of compound has 5.9 g H and 94.1 g O. Multiply by conversion factors relating moles of the elements to grams.

$$5.9 \, \frac{\text{g H}}{\text{g H}} \times \frac{1 \, \text{mol H}}{1.0 \, \frac{\text{g H}}{\text{H}}} = 5.9 \, \text{mol H}$$

$$94.1 \frac{\text{g O}}{\text{g O}} \times \frac{1 \text{ mol O}}{16.0 \frac{\text{g O}}{\text{g O}}} = 5.88 \text{ mol O}$$

So the mole ratio for 100 g of the compound is $H_{5.9}O_{5.9}$. But formulas must have whole number subscripts. Divide each molar quantity by the smaller number of moles. This will give 1 mol for the element with the smaller number of moles. In this case, the ratio is one-to-one and so the empirical formula is simply H_1O_1 . However, a subscript of one is never written, so the answer is <u>HO</u>

Evaluate

Step 3. Does the result make sense?

The subscripts are whole numbers and the percent composition of this empirical

formula equals the percent compostion given in the original problem.

b. 67.6% Hg, 10.8% S, 21.6% O

Analyze

Step 1. List the knowns and the unknown.

percent composition: 67.6% Hg, 10.8% S, 21.6% O

molar mass Hg = 200.6 g/mol Hg

molar mass S = 32.1 g/mol S

molar mass O = 16.0 g/mol O

Unknown

empirical formula = $Hg_2S_2O_2$

Use the percent composition to convert to mass. Then use molar mass to convert to number of moles. Finally, determine whole number ratios based on the number of moles of each element per 100 grams of compound.

Calculate

Step 2. Solve for the unknown.

One hundred grams of compound has 67.6 g Hg, 10.8 g S, and 21.6 g O. Multiply by a conversion factor relating moles to grams.

$$67.6 \, \frac{\text{g Hg}}{\text{g Hg}} \times \frac{1 \, \text{mol Hg}}{200.6 \, \frac{\text{g Hg}}{\text{g Hg}}} = 0.337 \, \text{mol Hg}$$

$$10.8 \frac{\text{g S}}{\text{g S}} \times \frac{1 \text{ mol S}}{32.1 \frac{\text{g S}}{\text{g S}}} = 0.336 \text{ mol S}$$

$$21.6 \frac{\text{g O}}{\text{g O}} \times \frac{1 \text{ mol O}}{16.0 \frac{\text{g O}}{\text{g O}}} = 1.35 \text{ mol O}$$

So the mole ratio for 100 g of the compound is $Hg_{0.34}S_{0.34}O_{1.35}$ Divide each molar quantity by the smaller number of moles.

$$\frac{0.34 \text{ mol Hg}}{0.34} = 1 \text{ mol Hg}$$

$$\frac{0.34 \text{ mol S}}{0.34} = 1 \text{ mol S}$$

$$\frac{1.35 \text{ mol O}}{1.35} = 4 \text{ mol O}$$

The empirical formula is HgSO₄

Evaluate

Step 3. Does the result make sense?

The subscripts are whole numbers and the percent composition of this empirical

formula equals the percent composition given in the original problem.

GUIDED PRACTICE PROBLEM 38 (page 312)

38. Find the molecular formula of ethylene glycol, which is used as antifreeze. The molar mass is 62 g/mol and the empirical formula is CH_3O .

Analyze

Step 1. List the knowns and the unknown.

Knowns

molar mass = 62 g/mol

empirical formula = CH_3O

Unknown

molecular formula = $C_2H_2O_2$

Calculate

Step 2. Solve for the unknown.

First, calculate the empirical formula mass (efm):

$$1 \, \frac{\text{mol C}}{1 \, \text{mol C}} \times \frac{12 \, \text{g C}}{1 \, \text{mol C}} = 12 \, \text{g C}$$

$$3 \frac{1.0 \text{ g H}}{1 \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = 3 \text{ g H}$$

$$1 \, \frac{\text{mol O}}{1 \, \text{mol O}} \times \frac{16 \, \text{g O}}{1 \, \text{mol O}} = 16 \, \text{g O}$$

So efm =
$$12g + 3g + 16g = 31g$$
.

Divide the molar mass by the empirical formula mass:

Molar mass/efm = 62 g/ 31 g = 2

Multiply subscripts in the empirical formula by this value.

The molecular formula is $C_2H_6O_2$

Evaluate

Step 3. Does the result make sense?

The molecular formula has the given molar mass, and can be reduced to the

empirical formula.